InterviewStack.io LogoInterviewStack.io
📈

Data Science & Analytics Topics

Statistical analysis, data analytics, big data technologies, and data visualization. Covers statistical methods, exploratory analysis, and data storytelling.

Metrics Analysis and Data Driven Problem Solving

Skills for using quantitative metrics to diagnose and solve product or support problems. Candidates should be able to identify relevant key performance indicators such as customer satisfaction, response time, resolution rate, and first contact resolution, detect anomalies and trends, formulate and prioritize hypotheses about root causes, design experiments and controlled tests to validate hypotheses, perform cohort and time series analysis, evaluate statistical significance and practical impact, and implement and monitor data backed solutions. This also includes instrumentation and data collection best practices, dashboarding and visualization to surface insights, trade off analysis when balancing multiple metrics, and communicating findings and recommended changes to cross functional stakeholders.

40 questions

Data Analysis and Insight Generation

Ability to convert raw data into clear, evidence based business insights and prioritized recommendations. Candidates should demonstrate end to end analytical thinking including data cleaning and validation, exploratory analysis, summary statistics, distributions, aggregations, pivot tables, time series and trend analysis, segmentation and cohort analysis, anomaly detection, and interpretation of relationships between metrics. This topic covers hypothesis generation and validation, basic statistical testing, controlled experiments and split testing, sensitivity and robustness checks, and sense checking results against domain knowledge. It emphasizes connecting metrics to business outcomes, defining success criteria and measurement plans, synthesizing quantitative and qualitative evidence, and prioritizing recommendations based on impact feasibility risk and dependencies. Practical communication skills are assessed including charting dashboards crafting concise narratives and tailoring findings to non technical and technical stakeholders, along with documenting next steps experiments and how outcomes will be measured.

51 questions

Data Problem Solving and Business Context

Practical data oriented problem solving that connects business questions to correct, robust analyses. Includes translating business questions into queries and metric definitions, designing SQL or query logic for edge cases, handling data quality issues such as nulls duplicates and inconsistent dates, validating assumptions, and producing metrics like retention and churn. Emphasizes building queries and pipelines that are resilient to real world data issues, thinking through measurement definitions, and linking data findings to business implications and possible next steps.

45 questions

SQL for Data Analysis

Using SQL as a tool for data analysis and reporting. Focuses on writing queries to extract metrics, perform aggregations, join disparate data sources, use subqueries and window functions for trends and rankings, and prepare data for dashboards and reports. Includes best practices for reproducible analytical queries, handling time series and date arithmetic, basic query optimization considerations for analytic workloads, and when to use SQL versus built in reporting tools in analytics platforms.

40 questions

Data Driven Decision Making

Using metrics and analytics to inform operational and strategic decisions. Topics include defining and interpreting operational measures such as throughput cycle time error rates resource utilization cost per unit quality measures and on time delivery, as well as growth and lifecycle metrics across acquisition activation retention and revenue. Emphasis is on building audience segmented dashboards and reports presenting insights to influence stakeholders diagnosing problems through variance analysis and performance analytics identifying bottlenecks measuring campaign effectiveness and guiding resource allocation and investment decisions. Also covers how metric expectations change with seniority and how to shape organizational metric strategy and scorecards to drive accountability.

38 questions

Data Storytelling and Insight Communication

Skills for converting quantitative and qualitative analysis into a clear, persuasive narrative that guides stakeholders from findings to action. This includes leading with the headline insight, defining the business question, selecting the most relevant metrics and visual evidence, and structuring a concise story that explains what happened, why it happened, and what the recommended next steps are. Candidates should demonstrate tailoring of language and technical depth for diverse audiences from engineers to product managers to executives, summarizing trade offs and uncertainty in plain language, distinguishing correlation from causation, proposing follow up experiments or investigations, and producing concise executive summaries and status reports with an appropriate cadence. Interviewers evaluate the ability to persuade and align cross functional partners, answer questions about data validity and methodology, synthesize qualitative signals with quantitative results, and adapt presentation format and level of detail to the decision maker.

40 questions

Insight Translation and Recommendations

The ability to move beyond reporting numbers to produce clear, actionable business recommendations and narratives. This includes summarizing the problem statement, approach, key findings, model or analysis performance, limitations, and recommended next steps framed as business actions. Candidates should demonstrate how insights map to business metrics and priorities, quantify potential impact and tradeoffs, propose experiments or interventions, and prioritize recommended actions. Effective communication techniques include concise storytelling, appropriate visualizations, translating technical metrics into business terms, anticipating stakeholder questions, and explicitly answering the questions so what and now what. Senior analysts connect root cause analysis to concrete proposals such as feature changes, pricing experiments, targeted support, or investment decisions, and explain risks, data assumptions, and implementation considerations.

40 questions

Business Impact Measurement and Metrics

Selecting, measuring, and interpreting the business metrics and outcomes that demonstrate value and guide decisions. Topics include high level performance indicators such as revenue decompositions, lifetime value, churn and retention, average revenue per user, unit economics and cost per transaction, as well as operational indicators like throughput, quality and system reliability. Candidates should be able to choose leading versus lagging indicators for a given question, map operational KPIs to business outcomes, build hypotheses about drivers, recommend measurement changes and define evaluation windows. Measurement and attribution techniques covered include establishing baselines, experimental and quasi experimental designs such as A B tests, control groups, difference in differences and regression adjustments, sample size reasoning, and approaches to isolate confounding factors. Also included are quick back of the envelope estimation techniques for order of magnitude impact, converting technical metrics into business consequences, building dashboards and health metrics to monitor programs, communicating numeric results with confidence bounds, and turning measurement into clear stakeholder facing narratives and recommendations.

47 questions

Data Interpretation & Dashboard Literacy

Practice interpreting data visualizations, trend lines, and metric dashboards. Develop ability to identify what's noteworthy (seasonality, anomalies, correlations) vs. normal variation. Think about causation vs. correlation. Practice explaining what a metric trend means in business terms and what actions it might suggest.

59 questions
Page 1/4