InterviewStack.io LogoInterviewStack.io

Performance Profiling and Optimization Questions

Comprehensive skills and methodology for profiling, diagnosing, and optimizing runtime performance across services, applications, and platforms. Involves measuring baseline performance using monitoring and profiling tools, capturing central processing unit, memory, input output, and network metrics, and interpreting flame graphs and execution traces to find hotspots. Requires a reproducible measure first approach to isolate root causes, distinguish central processing unit time from graphical processing unit time, and separate application bottlenecks from system level issues. Covers platform specific profilers and techniques such as frame time budgeting for interactive applications, synthetic benchmarks and production trace replay, and instrumentation with metrics, logs, and distributed traces. Candidates should be familiar with common root causes including lock contention, garbage collection pauses, disk saturation, cache misses, and inefficient algorithms, and be able to prioritize changes by expected impact. Optimization techniques included are algorithmic improvements, parallelization and concurrency control, memory management and allocation strategies, caching and batching, hardware acceleration, and focused micro optimizations. Also includes validating improvements through before and after measurements, regression and degradation analysis, reasoning about trade offs between performance, maintainability, and complexity, and creating reproducible profiling hooks and tests.

Unlock Full Question Bank

Get access to hundreds of Performance Profiling and Optimization interview questions and detailed answers.

Sign in to Continue

Join thousands of developers preparing for their dream job.