InterviewStack.io LogoInterviewStack.io

Backend Engineering & Performance Topics

Backend system optimization, performance tuning, memory management, and engineering proficiency. Covers system-level performance, remote support tools, and infrastructure optimization.

Scalability Analysis and Bottleneck Identification

Techniques for analyzing existing systems to find and prioritize bottlenecks and to validate scaling hypotheses. Topics include profiling and benchmarking strategies instrumentation and monitoring of latency throughput error rates and resource utilization; identification of common bottlenecks such as database write throughput central processing unit saturation memory pressure disk input output limits and network bandwidth constraints; designing experiments and load tests to reproduce issues and validate mitigations; proposing incremental fixes such as caching partitioning asynchronous processing or connection pooling; and measuring impact with clear metrics and iteration. Interviewers will probe the candidate on moving from observations to root cause and on designing low risk experiments to validate improvements.

40 questions

Caching and Performance Optimization

Covers design and implementation of multi layer caching and end to end performance strategies for web and backend systems. Topics include client side techniques such as browser caching, service worker strategies, code splitting, and lazy loading for components images and data; edge and distribution techniques such as content delivery network design and caching of static assets; and server side and data layer caching using in memory stores such as Redis and Memcached, query result caching, and database caching patterns. Includes cache invalidation and coherence strategies such as time to live, least recently used eviction, cache aside, write through and write behind, and prevention of cache stampedes. Covers when to introduce caching and when not to, performance and consistency trade offs, connection pooling, monitoring and metrics, establishing performance budgets, and operational considerations such as cache warm up and invalidation during deploys. Also addresses higher level concerns including search engine optimization implications and server side rendering trade offs, and how performance decisions map to user experience and business metrics at senior levels.

38 questions

Performance Engineering and Cost Optimization

Engineering practices and trade offs for meeting performance objectives while controlling operational cost. Topics include setting latency and throughput targets and latency budgets; benchmarking profiling and tuning across application database and infrastructure layers; memory compute serialization and batching optimizations; asynchronous processing and workload shaping; capacity estimation and right sizing for compute and storage to reduce cost; understanding cost drivers in cloud environments including network egress and storage tiering; trade offs between real time and batch processing; and monitoring to detect and prevent performance regressions. Candidates should describe measurement driven approaches to optimization and be able to justify trade offs between cost complexity and user experience.

40 questions

System Monitoring and Performance Tuning

Operational monitoring and continuous tuning of system and infrastructure resources to maintain performance and reliability. Topics include key system health and performance metrics such as central processing unit usage memory utilization disk input output and latency network bandwidth process counts system load latency and throughput and queries per second, establishing baselines and normal ranges, anomaly detection and root cause triage, instrumentation and metric collection for system health, reading monitoring dashboards and recognizing common failure patterns, interpreting system logs and using diagnostic commands and tools, setting alert thresholds and prioritization and escalation pathways, capacity planning and remediation steps, resource tuning to remove bottlenecks, and knowing when to escalate to deeper engineering investigation. Candidates should be able to connect observed symptoms to likely causes describe basic troubleshooting workflows and propose mitigation and prevention measures.

40 questions

Optimization and Technical Trade Offs

Focuses on evaluating and improving solutions with attention to trade offs between performance, resource usage, simplicity, and reliability. Topics include analyzing time complexity and space complexity, choosing algorithms and data structures with appropriate trade offs, profiling and measuring real bottlenecks, deciding when micro optimizations are worthwhile versus algorithmic changes, and explaining why a less optimal brute force approach may be acceptable in certain contexts. Also cover maintainability versus performance, concurrency and latency trade offs, and cost implications of optimization decisions. Candidates should justify choices with empirical evidence and consider incremental and safe optimization strategies.

40 questions

Performance Profiling and Optimization

Comprehensive skills and methodology for profiling, diagnosing, and optimizing runtime performance across services, applications, and platforms. Involves measuring baseline performance using monitoring and profiling tools, capturing central processing unit, memory, input output, and network metrics, and interpreting flame graphs and execution traces to find hotspots. Requires a reproducible measure first approach to isolate root causes, distinguish central processing unit time from graphical processing unit time, and separate application bottlenecks from system level issues. Covers platform specific profilers and techniques such as frame time budgeting for interactive applications, synthetic benchmarks and production trace replay, and instrumentation with metrics, logs, and distributed traces. Candidates should be familiar with common root causes including lock contention, garbage collection pauses, disk saturation, cache misses, and inefficient algorithms, and be able to prioritize changes by expected impact. Optimization techniques included are algorithmic improvements, parallelization and concurrency control, memory management and allocation strategies, caching and batching, hardware acceleration, and focused micro optimizations. Also includes validating improvements through before and after measurements, regression and degradation analysis, reasoning about trade offs between performance, maintainability, and complexity, and creating reproducible profiling hooks and tests.

0 questions

Complexity Analysis and Performance Modeling

Analyze algorithmic and system complexity including time and space complexity in asymptotic terms and real world performance modeling. Candidates should be fluent with Big O, Big Theta, and Big Omega notation and common complexity classes, and able to reason about average case versus worst case and trade offs between different algorithmic approaches. Extend algorithmic analysis into system performance considerations: estimate execution time, memory usage, I O and network costs, cache behavior, instruction and cycle counts, and power or latency budgets. Include methods for profiling, benchmarking, modeling throughput and latency, and translating asymptotic complexity into practical performance expectations for real systems.

0 questions

Performance Optimization and Latency Engineering

Covers systematic approaches to measuring and improving system performance and latency at architecture and code levels. Topics include profiling and tracing to find where time is actually spent, forming and testing hypotheses, optimizing critical paths, and validating improvements with measurable metrics. Candidates should be able to distinguish central processing unit bound work from input output bound work, analyze latency versus throughput trade offs, evaluate where caching and content delivery networks help or hurt, recognize database and network constraints, and propose strategies such as query optimization, asynchronous processing patterns, resource pooling, and load balancing. Also includes performance testing methodologies, reasoning about trade offs and risks, and describing end to end optimisation projects and their business impact.

0 questions