Stream Processing and Event Streaming Questions
Designing and operating systems that ingest, process, and serve continuous event streams with low latency and high throughput. Core areas include architecture patterns for stream native and event driven systems, trade offs between batch and streaming models, and event sourcing concepts. Candidates should demonstrate knowledge of messaging and ingestion layers, message brokers and commit log systems, partitioning and consumer group patterns, partition key selection, ordering guarantees, retention and compaction strategies, and deduplication techniques. Processing concerns include stream processing engines, state stores, stateful processing, checkpointing and fault recovery, processing guarantees such as at least once and exactly once semantics, idempotence, and time semantics including event time versus processing time, watermarks, windowing strategies, late and out of order event handling, and stream to stream and stream to table joins and aggregations over windows. Performance and operational topics cover partitioning and scaling strategies, backpressure and flow control, latency versus throughput trade offs, resource isolation, monitoring and alerting, testing strategies for streaming pipelines, schema evolution and compatibility, idempotent sinks, persistent storage choices for state and checkpoints, and operational metrics such as stream lag. Familiarity with concrete technologies and frameworks is expected when discussing designs and trade offs, for example Apache Kafka, Kafka Streams, Apache Flink, Spark Structured Streaming, Amazon Kinesis, and common serialization formats such as Avro, Protocol Buffers, and JSON.
Unlock Full Question Bank
Get access to hundreds of Stream Processing and Event Streaming interview questions and detailed answers.
Sign in to ContinueJoin thousands of developers preparing for their dream job.