InterviewStack.io LogoInterviewStack.io
đź”—

Data Engineering & Analytics Infrastructure Topics

Data pipeline design, ETL/ELT processes, streaming architectures, data warehousing infrastructure, analytics platform design, and real-time data processing. Covers event-driven systems, batch and streaming trade-offs, data quality and governance at scale, schema design for analytics, and infrastructure for big data processing. Distinct from Data Science & Analytics (which focuses on statistical analysis and insights) and from Cloud & Infrastructure (platform-focused rather than data-flow focused).

Data Architecture and Pipelines

Designing data storage, integration, and processing architectures. Topics include relational and NoSQL database design, indexing and query optimization, replication and sharding strategies, data warehousing and dimensional modeling, ETL and ELT patterns, batch and streaming ingestion, processing frameworks, feature stores, archival and retention strategies, and trade offs for scale and latency in large data systems.

40 questions

Lyft-Specific Data Modeling & Analytics Requirements

Lyft-specific data modeling and analytics requirements for data platforms, including ride event data, trip-level schemas, driver and rider dimensions, pricing and surge data, geospatial/location data, and analytics needs such as reporting, dashboards, and real-time analytics. Covers analytic schema design (star/snowflake), ETL/ELT patterns, data quality and governance at scale, data lineage, privacy considerations, and integration with the broader data stack (data lake/warehouse, streaming pipelines).

48 questions

Data Cleaning and Quality Validation in SQL

Handle NULL values, duplicates, and data type issues within queries. Implement data validation checks (row counts, value distributions, date ranges). Practice identifying and documenting data quality issues that impact analysis reliability.

40 questions

Metric Definition and Implementation

End to end topic covering the precise definition, computation, transformation, implementation, validation, documentation, and monitoring of business metrics. Candidates should demonstrate how to translate business requirements into reproducible metric definitions and formulas, choose aggregation methods and time windows, set filtering and deduplication rules, convert event level data to user level metrics, and compute cohorts, retention, attribution, and incremental impact. The work includes data transformation skills such as normalizing and formatting date and identifier fields, handling null values and edge cases, creating calculated fields and measures, combining and grouping tables at appropriate levels, and choosing between percentages and absolute numbers. Implementation details include writing reliable structured query language code or scripts, selecting instrumentation and data sources, considering aggregation strategy, sampling and margin of error, and ensuring pipelines produce reproducible results. Validation and quality practices include spot checks, comparison to known totals, automated tests, monitoring and alerting, naming conventions and versioning, and clear documentation so all calculations are auditable and maintainable.

57 questions

Data Validation and Anomaly Detection

Techniques for validating data quality and detecting anomalies using SQL: identifying nulls and missing values, finding duplicates and orphan records, range checks, sanity checks across aggregates, distribution checks, outlier detection heuristics, reconciliation queries across systems, and building SQL based alerts and integrity checks. Includes strategies for writing repeatable validation queries, comparing row counts and sums across pipelines, and documenting assumptions for investigative analysis.

40 questions

Stream Processing and Event Streaming

Designing and operating systems that ingest, process, and serve continuous event streams with low latency and high throughput. Core areas include architecture patterns for stream native and event driven systems, trade offs between batch and streaming models, and event sourcing concepts. Candidates should demonstrate knowledge of messaging and ingestion layers, message brokers and commit log systems, partitioning and consumer group patterns, partition key selection, ordering guarantees, retention and compaction strategies, and deduplication techniques. Processing concerns include stream processing engines, state stores, stateful processing, checkpointing and fault recovery, processing guarantees such as at least once and exactly once semantics, idempotence, and time semantics including event time versus processing time, watermarks, windowing strategies, late and out of order event handling, and stream to stream and stream to table joins and aggregations over windows. Performance and operational topics cover partitioning and scaling strategies, backpressure and flow control, latency versus throughput trade offs, resource isolation, monitoring and alerting, testing strategies for streaming pipelines, schema evolution and compatibility, idempotent sinks, persistent storage choices for state and checkpoints, and operational metrics such as stream lag. Familiarity with concrete technologies and frameworks is expected when discussing designs and trade offs, for example Apache Kafka, Kafka Streams, Apache Flink, Spark Structured Streaming, Amazon Kinesis, and common serialization formats such as Avro, Protocol Buffers, and JSON.

40 questions

Data Quality and Governance

Covers the principles, frameworks, practices, and tooling used to ensure data is accurate, complete, timely, and trustworthy across systems and pipelines. Key areas include data quality checks and monitoring such as nullness and type checks, freshness and timeliness validation, referential integrity, deduplication, outlier detection, reconciliation, and automated alerting. Includes design of service level agreements for data freshness and accuracy, data lineage and impact analysis, metadata and catalog management, data classification, access controls, and compliance policies. Encompasses operational reliability of data systems including failure handling, recovery time objectives, backup and disaster recovery strategies, observability and incident response for data anomalies. Also covers domain and system specific considerations such as customer relationship management and sales systems: common causes of data problems, prevention strategies like input validation rules, canonicalization, deduplication and training, and business impact on forecasting and operations. Candidates may be evaluated on designing end to end data quality programs, selecting metrics and tooling, defining roles and stewardship, and implementing automated pipelines and governance controls.

40 questions

Data Warehousing and Data Lakes

Covers conceptual and practical design, architecture, and operational considerations for data warehouses and data lakes. Topics include differences between warehouses and lakes, staging areas and ingestion patterns, schema design such as star schema and dimensional modeling, handling slowly changing dimensions and fact tables, partitioning and bucketing strategies for large datasets, common architectures including medallion architecture with bronze silver and gold layers, real time and batch ingestion approaches, metadata management, and data governance. Interview questions may probe trade offs between architectures, how to design schemas for analytical queries, how to support both analytical performance and flexibility, and how to incorporate lineage and governance into designs.

49 questions

Analytics Platforms and Dashboards

Comprehensive knowledge of analytics platforms, implementation of tracking, reporting infrastructure, and dashboard design to support marketing, product, and content decisions. Candidates should be able to describe tool selection and configuration for platforms such as Google Analytics Four, Adobe Analytics, Mixpanel, Amplitude, Tableau, and Looker, including the trade offs between vendor solutions, native platform analytics, and custom instrumentation. Core implementation topics include defining measurement plans and event schemas, event instrumentation across web and mobile, tagging strategy and data layer design, Urchin Tracking Module parameter handling and cross domain attribution, conversion measurement, and attribution model design. Analysis and reporting topics include funnel analysis, cohort analysis, retention and segmentation, key performance indicator definition, scheduled reporting and automated reporting pipelines, alerting for data anomalies, and translating raw metrics into stakeholder ready dashboards and narrative visualizations. Integration and governance topics include data quality checks and validation, data governance and ownership, exporting and integrating analytics with data warehouses and business intelligence pipelines, and monitoring instrumentation coverage and regression. The scope also covers channel specific analytics such as search engine optimization tools, social media native analytics, and email marketing metrics including delivery rates, open rates, and click through rates. For junior candidates, demonstration of fluency with one or two tools and basic measurement concepts is sufficient; for senior candidates, expect discussion of architecture, pipeline automation, governance, cross functional collaboration, and how analytics drive experiments and business decisions.

40 questions
Page 1/4