InterviewStack.io LogoInterviewStack.io

Backend Engineering & Performance Topics

Backend system optimization, performance tuning, memory management, and engineering proficiency. Covers system-level performance, remote support tools, and infrastructure optimization.

Performance Optimization and Latency Engineering

Covers systematic approaches to measuring and improving system performance and latency at architecture and code levels. Topics include profiling and tracing to find where time is actually spent, forming and testing hypotheses, optimizing critical paths, and validating improvements with measurable metrics. Candidates should be able to distinguish central processing unit bound work from input output bound work, analyze latency versus throughput trade offs, evaluate where caching and content delivery networks help or hurt, recognize database and network constraints, and propose strategies such as query optimization, asynchronous processing patterns, resource pooling, and load balancing. Also includes performance testing methodologies, reasoning about trade offs and risks, and describing end to end optimisation projects and their business impact.

36 questions

Performance Engineering and Cost Optimization

Engineering practices and trade offs for meeting performance objectives while controlling operational cost. Topics include setting latency and throughput targets and latency budgets; benchmarking profiling and tuning across application database and infrastructure layers; memory compute serialization and batching optimizations; asynchronous processing and workload shaping; capacity estimation and right sizing for compute and storage to reduce cost; understanding cost drivers in cloud environments including network egress and storage tiering; trade offs between real time and batch processing; and monitoring to detect and prevent performance regressions. Candidates should describe measurement driven approaches to optimization and be able to justify trade offs between cost complexity and user experience.

55 questions

Optimization and Technical Trade Offs

Focuses on evaluating and improving solutions with attention to trade offs between performance, resource usage, simplicity, and reliability. Topics include analyzing time complexity and space complexity, choosing algorithms and data structures with appropriate trade offs, profiling and measuring real bottlenecks, deciding when micro optimizations are worthwhile versus algorithmic changes, and explaining why a less optimal brute force approach may be acceptable in certain contexts. Also cover maintainability versus performance, concurrency and latency trade offs, and cost implications of optimization decisions. Candidates should justify choices with empirical evidence and consider incremental and safe optimization strategies.

40 questions

Complexity Analysis and Performance Modeling

Analyze algorithmic and system complexity including time and space complexity in asymptotic terms and real world performance modeling. Candidates should be fluent with Big O, Big Theta, and Big Omega notation and common complexity classes, and able to reason about average case versus worst case and trade offs between different algorithmic approaches. Extend algorithmic analysis into system performance considerations: estimate execution time, memory usage, I O and network costs, cache behavior, instruction and cycle counts, and power or latency budgets. Include methods for profiling, benchmarking, modeling throughput and latency, and translating asymptotic complexity into practical performance expectations for real systems.

36 questions

Scalability Analysis and Bottleneck Identification

Techniques for analyzing existing systems to find and prioritize bottlenecks and to validate scaling hypotheses. Topics include profiling and benchmarking strategies instrumentation and monitoring of latency throughput error rates and resource utilization; identification of common bottlenecks such as database write throughput central processing unit saturation memory pressure disk input output limits and network bandwidth constraints; designing experiments and load tests to reproduce issues and validate mitigations; proposing incremental fixes such as caching partitioning asynchronous processing or connection pooling; and measuring impact with clear metrics and iteration. Interviewers will probe the candidate on moving from observations to root cause and on designing low risk experiments to validate improvements.

0 questions

Performance Tuning and Trade Offs

Covers practical techniques and the decision making involved in improving system and database performance. Topics include identifying bottlenecks through profiling and monitoring, the performance tuning lifecycle of measure diagnose implement and verify, and common optimizations such as indexing strategies, query restructuring, denormalization, caching layers, materialized views, and appropriate use of query hints. Also includes understanding performance related trade offs such as CPU versus memory, read versus write optimization, latency versus throughput, and complexity versus maintainability. Emphasizes prioritizing optimizations based on business impact and return on investment, cost considerations, and when to avoid premature optimization. Candidates should demonstrate how they measure improvements, validate results, and align technical changes with product and business goals.

0 questions