InterviewStack.io LogoInterviewStack.io

Backend Engineering & Performance Topics

Backend system optimization, performance tuning, memory management, and engineering proficiency. Covers system-level performance, remote support tools, and infrastructure optimization.

Performance Engineering and Cost Optimization

Engineering practices and trade offs for meeting performance objectives while controlling operational cost. Topics include setting latency and throughput targets and latency budgets; benchmarking profiling and tuning across application database and infrastructure layers; memory compute serialization and batching optimizations; asynchronous processing and workload shaping; capacity estimation and right sizing for compute and storage to reduce cost; understanding cost drivers in cloud environments including network egress and storage tiering; trade offs between real time and batch processing; and monitoring to detect and prevent performance regressions. Candidates should describe measurement driven approaches to optimization and be able to justify trade offs between cost complexity and user experience.

43 questions

Optimization Under Constraints

Technical approaches for optimizing code and systems when operating under constraints such as limited memory, strict frame or latency budgets, network bandwidth limits, or device specific limitations. Topics include profiling and instrumentation to identify bottlenecks, algorithmic complexity improvements, memory and data structure trade offs, caching and data locality strategies, parallelism and concurrency considerations, and platform specific tuning. Emphasize measurement driven optimization, benchmarking, risk of premature optimization, graceful degradation strategies, and communicating performance trade offs to product and engineering stakeholders.

0 questions