Model Evaluation and Validation Questions
Comprehensive coverage of how to measure, validate, debug, and monitor machine learning model performance across problem types and throughout the development lifecycle. Candidates should be able to select and justify appropriate evaluation metrics for classification, regression, object detection, and natural language tasks, including accuracy, precision, recall, F one score, receiver operating characteristic area under the curve, mean squared error, mean absolute error, root mean squared error, R squared, intersection over union, and mean average precision, and to describe language task metrics such as token overlap and perplexity. They should be able to interpret confusion matrices and calibration, perform threshold selection and cost sensitive decision analysis, and explain the business implications of false positives and false negatives. Validation and testing strategies include train test split, holdout test sets, k fold cross validation, stratified sampling, and temporal splits for time series, as well as baseline comparisons, champion challenger evaluation, offline versus online evaluation, and online randomized experiments. Candidates should demonstrate techniques to detect and mitigate overfitting and underfitting including learning curves, validation curves, regularization, early stopping, data augmentation, and class imbalance handling, and should be able to debug failing models by investigating data quality, label noise, feature engineering, model training dynamics, and evaluation leakage. The topic also covers model interpretability and limitations, robustness and adversarial considerations, fairness and bias assessment, continuous validation and monitoring in production for concept drift and data drift, practical testing approaches including unit tests for preprocessing and integration tests for pipelines, monitoring and alerting, and producing clear metric reporting tied to business objectives.
Unlock Full Question Bank
Get access to hundreds of Model Evaluation and Validation interview questions and detailed answers.
Sign in to ContinueJoin thousands of developers preparing for their dream job.