Machine Learning Algorithms and Theory Questions
Core supervised and unsupervised machine learning algorithms and the theoretical principles that guide their selection and use. Covers linear regression, logistic regression, decision trees, random forests, gradient boosting, support vector machines, k means clustering, hierarchical clustering, principal component analysis, and anomaly detection. Topics include model selection, bias variance trade off, regularization, overfitting and underfitting, ensemble methods and why they reduce variance, computational complexity and scaling considerations, interpretability versus predictive power, common hyperparameters and tuning strategies, and practical guidance on when each algorithm is appropriate given data size, feature types, noise, and explainability requirements.
Unlock Full Question Bank
Get access to hundreds of Machine Learning Algorithms and Theory interview questions and detailed answers.
Sign in to ContinueJoin thousands of developers preparing for their dream job.