Linear and Logistic Regression Implementation Questions
Covers the fundamentals and implementation details of linear regression for continuous prediction and logistic regression for binary or multiclass classification. Candidates should understand model formulation, hypothesis functions, and the intuition behind fitting a line or hyperplane for regression and using a sigmoid or softmax function for classification. Include loss functions such as mean squared error for regression and cross entropy loss for classification, optimization methods including gradient descent and variants, regularization techniques, feature engineering and scaling, metrics for evaluation such as mean absolute error and accuracy and area under curve, and hyperparameter selection and validation strategies. Expect discussion of practical implementation using numerical libraries and machine learning toolkits, trade offs and limitations of each approach, numerical stability, and common pitfalls such as underfitting and overfitting.
Unlock Full Question Bank
Get access to hundreds of Linear and Logistic Regression Implementation interview questions and detailed answers.
Sign in to ContinueJoin thousands of developers preparing for their dream job.