Data Preprocessing and Handling for AI Questions
Covers the end to end preparation of raw data for analysis and modeling in machine learning and artificial intelligence. Topics include data collection and ingestion, data quality assessment, detecting and handling missing values with deletion or various imputation strategies, identifying and treating outliers, removing duplicates, and standardizing formats such as dates and categorical labels. Includes data type conversions, categorical variable encoding, feature scaling and normalization, standardization to zero mean and unit variance, and guidance on when each is appropriate given model choice. Covers feature engineering and selection, addressing class imbalance with sampling and weighting methods, and domain specific preprocessing such as data augmentation for computer vision and text preprocessing for natural language processing. Emphasizes correct order of operations, reproducible pipelines, splitting data into training validation and test sets, cross validation practices, and documenting preprocessing decisions and their impact on model performance. Also explains which models are sensitive to feature scale, common pitfalls, and evaluation strategies to ensure preprocessing does not leak information.
Unlock Full Question Bank
Get access to hundreds of Data Preprocessing and Handling for AI interview questions and detailed answers.
Sign in to ContinueJoin thousands of developers preparing for their dream job.