Machine Learning and Forecasting Algorithms Questions
An in-depth coverage of machine learning methods used for forecasting and time-series prediction, including traditional time-series models (ARIMA, SARIMA, Holt-Winters), probabilistic forecasting techniques, and modern ML approaches (Prophet, LSTM/GRU, Transformer-based forecasters). Topics include feature engineering for seasonality and trend, handling non-stationarity and exogenous variables, model evaluation for time-series (rolling-origin cross-validation, backtesting, MAE/MAPE/RMSE), uncertainty quantification, and practical deployment considerations such as retraining, monitoring, and drift detection. Applies to forecasting problems in sales, demand planning, energy, finance, and other domains.
Unlock Full Question Bank
Get access to hundreds of Machine Learning and Forecasting Algorithms interview questions and detailed answers.
Sign in to ContinueJoin thousands of developers preparing for their dream job.