Data Modeling and Architecture Questions
Design and modeling principles for transactional and analytical data systems. Topics include entity relationship modeling, normalization and denormalization trade offs, dimensional modeling with fact and dimension tables and star and snowflake schemata, indexing strategies, partitioning and sharding, and schema design for performance and maintainability. Cover data pipelines and integration patterns including extract transform load and extract load transform approaches, data warehousing and data lake concepts, ETL orchestration, and how sources feed into reporting and business intelligence systems. Also include considerations for data quality, governance, and the differences between online transaction processing and online analytical processing workloads.
Unlock Full Question Bank
Get access to hundreds of Data Modeling and Architecture interview questions and detailed answers.
Sign in to ContinueJoin thousands of developers preparing for their dream job.