InterviewStack.io LogoInterviewStack.io
đź§®

Technical Fundamentals & Core Skills Topics

Core technical concepts including algorithms, data structures, statistics, cryptography, and hardware-software integration. Covers foundational knowledge required for technical roles and advanced technical depth.

Technical Depth and Domain Expertise

Covers a candidate's deep hands on technical knowledge and practical expertise in one or more technical domains and their ability to provide credible technical oversight. Interviewers probe specialized system design, domain specific patterns and constraints, and how the candidate stays current in the field. Expect questions on platform internals such as Linux and Windows internals, networking fundamentals including transport and internet protocols, domain name system, routing, and firewalls, database internals and performance tuning, storage and input output behavior, virtualization and containerization, cloud infrastructure and services, application performance analysis, security principles, and troubleshooting methodologies. Candidates should be prepared to explain architecture and design trade offs, justify technical decisions with metrics and benchmarks, walk through root cause analysis and debugging steps, describe tooling and automation used for deployment and operations, and discuss capacity planning and scaling strategies. For senior roles, demonstrate both breadth across multiple domains and depth in one or two specialized areas with concrete examples of diagnostics, performance tuning, incident response, and technical leadership. Interviewers may also ask why the candidate specialized, how they built that expertise, how that expertise shaped technical decisions and trade offs in real projects, expected failure modes and performance considerations, and how the candidate mentors others or drives best practices within their specialization.

40 questions

Linked Lists and Trees

Dynamic and pointer based data structures including linked lists and tree structures commonly tested in interviews. For linked lists cover node based representation, traversal, insertion at head and tail, deletion, searching, reversing a list, detecting cycles, and tradeoffs versus array based lists. For trees cover basic concepts such as binary trees and binary search trees, tree node representation, insertion and deletion in search trees, recursion patterns, and traversal algorithms including depth first search with in order pre order and post order variants and breadth first search. Also include problem solving patterns such as recursion and iterative stack or queue based approaches, analysis of time and space complexity in plain terms, and common interview tasks such as lowest common ancestor, tree balancing awareness, and converting between representations. Practice includes implementing algorithms, writing traversal routines, and reasoning about correctness and performance.

45 questions

Debugging Testing and Optimization

Core engineering skills for identifying, diagnosing, testing, and improving code correctness and performance. Covers approaches to finding and fixing bugs including reproducible test case construction, logging, interactive debugging, step through debugging, and root cause analysis. Includes testing strategies such as unit testing, integration testing, regression testing, test driven development, and designing tests for edge cases, boundary conditions, and negative scenarios. Describes performance optimization techniques including algorithmic improvements, data structure selection, reducing time and space complexity, memoization, avoiding unnecessary work, and parallelism considerations. Also covers measurement and verification methods such as benchmarking, profiling, complexity analysis, and trade off evaluation to ensure optimizations preserve correctness and maintainability.

45 questions

Trees and Graphs

Comprehensive knowledge of tree and graph data structures and algorithms commonly tested in coding interviews. Candidates should understand representations such as adjacency list and adjacency matrix and when to use each, and tree representations including n ary trees and binary search trees. Expect to implement and reason about traversals including depth first search and breadth first search, tree traversals such as pre order in order and post order, and level order traversal. Cover algorithms including topological sorting for directed acyclic graphs, cycle detection, connected components, shortest path algorithms such as breadth first search for unweighted graphs, Dijkstra for nonnegative weights, and Bellman Ford for graphs with negative edges, and minimum spanning tree algorithms such as Kruskal and Prim. Include disjoint set union find for connectivity and for use with Kruskal, lowest common ancestor techniques and implementations, tree dynamic programming problems, serialization and deserialization, reconstruction from traversals, balancing and validation checks for binary search trees and balanced tree concepts, diameter and path sum problems, and common interview patterns such as path finding dependency resolution and structural transformation. Emphasize implementation details and common pitfalls including correct use of visited tracking recursion depth edge cases and disconnected components, and practice articulating time and space complexity tradeoffs and algorithm selection under different constraints.

51 questions

Linked Lists Stacks and Queues

Covers core singly and doubly linked list concepts and the fundamental abstract data types stack and queue. For linked lists this includes node structure, traversal, insertion at head and tail, deletion, reversal, finding middle, merging, detecting cycles, removing duplicates, intersection detection, and pointer manipulation details for languages with manual memory management. For stacks and queues this includes LIFO and FIFO semantics, push, pop, peek, enqueue, dequeue, circular buffer implementations, and implementing one with the other (for example queue with two stacks). Also includes array versus linked list implementations, complexity analysis for time and space, and common algorithmic patterns that use these structures (for example bracket matching, reverse polish notation evaluation, depth first search using a stack, breadth first search using a queue, sliding window and monotonic queue techniques). Interviewers assess correct implementation, edge case handling, performance tradeoffs, and ability to choose the appropriate structure or approach for a problem.

50 questions

Problem Solving and Analytical Thinking

Evaluates a candidate's systematic and logical approach to unfamiliar, ambiguous, or complex problems across technical, product, business, security, and operational contexts. Candidates should be able to clarify objectives and constraints, ask effective clarifying questions, decompose problems into smaller components, identify root causes, form and test hypotheses, and enumerate and compare multiple solution options. Interviewers look for clear reasoning about trade offs and edge cases, avoidance of premature conclusions, use of repeatable frameworks or methodologies, prioritization of investigations, design of safe experiments and measurement of outcomes, iteration based on feedback, validation of fixes, documentation of results, and conversion of lessons learned into process improvements. Responses should clearly communicate the thought process, justify choices, surface assumptions and failure modes, and demonstrate learning from prior problem solving experiences.

36 questions

Fundamental Algorithms and Techniques

Covers core algorithmic concepts and problem solving patterns commonly assessed in technical interviews. Topics include searching algorithms such as binary search; sorting algorithms such as merge sort and quick sort; graph traversal methods such as breadth first search and depth first search; recursion and divide and conquer techniques; greedy heuristics; and dynamic programming including memoization and tabulation. Also includes implementation patterns such as two pointers, sliding window, prefix sums, and divide and conquer composition, as well as practical considerations like in place versus out of place implementations, stability for sorting, recursion stack and memory usage, and amortized analysis. Candidates should be able to implement these algorithms correctly, explain correctness and trade offs, analyze time and space complexity using Big O notation for best case average case and worst case, select appropriate approaches given input constraints, combine patterns to solve composite problems, and optimize or refactor solutions while handling edge cases.

40 questions

Data Structure Selection and Trade Offs

Skill in selecting appropriate data structures and algorithmic approaches for practical problems and performance constraints. Candidates should demonstrate how to choose between arrays lists maps sets trees heaps and specialized structures based on access patterns memory and CPU requirements and concurrency considerations. Coverage includes case based selection for domain specific systems such as games inventory or spatial indexing where structures like quadtrees or spatial hashing are appropriate, and language specific considerations such as value versus reference types or object pooling. Emphasis is on explaining rationale trade offs and expected performance implications in concrete scenarios.

57 questions

Advanced Algorithms and Problem Solving

Comprehensive assessment of advanced algorithmic reasoning, design, and optimization for hard and composite problems. Covers advanced dynamic programming techniques including state compression and bitmask dynamic programming, combinatorial generation and backtracking, recursion and divide and conquer strategies, greedy algorithms with correctness proofs, and advanced graph algorithms such as breadth first search, depth first search, shortest path algorithms including Dijkstra and Bellman Ford, minimum spanning tree, network flow, strongly connected components, and topological sort. Also includes advanced tree and string algorithms such as suffix arrays and advanced hashing, bit manipulation and low level optimizations, algorithmic reductions and heuristics, and complexity analysis including amortized reasoning. Candidates should recognize applicable patterns, combine multiple data structures in a single solution, transform brute force approaches into optimized solutions, prove correctness and derive time and space complexity bounds, handle edge cases and invariants, and articulate trade offs and incremental optimization strategies. At senior levels expect mentoring on algorithmic choices, designing for tight constraints, and explaining engineering implications of algorithm selection.

36 questions
Page 1/5