Data Quality and Validation Questions
Covers the core concepts and hands on techniques for detecting, diagnosing, and preventing data quality problems. Topics include common data issues such as missing values, duplicates, outliers, incorrect labels, inconsistent formats, schema mismatches, referential integrity violations, and distribution or temporal drift. Candidates should be able to design and implement validation checks and data profiling queries, including schema validation, column level constraints, aggregate checks, distinct counts, null and outlier detection, and business logic tests. This topic also covers the mindset of data validation and exploration: how to approach unfamiliar datasets, validate calculations against sources, document quality rules, decide remediation strategies such as imputation quarantine or alerting, and communicate data limitations to stakeholders.
Unlock Full Question Bank
Get access to hundreds of Data Quality and Validation interview questions and detailed answers.
Sign in to ContinueJoin thousands of developers preparing for their dream job.