Programming Languages & Core Development Topics
Programming languages, development fundamentals, coding concepts, and core data structures. Includes syntax, algorithms, memory management at a programming level, asynchronous patterns, and concurrency primitives. Also covers core data manipulation concepts like hashing, collections, error handling, and DOM manipulation for web development. Excludes tool-specific proficiency (see 'Tools, Frameworks & Implementation Proficiency').
Error Handling and Code Quality
Focuses on writing production quality code and scripts that are defensive, maintainable, and fail gracefully. Covers anticipating and handling failures such as exceptions, missing files, network errors, and process exit codes; using language specific constructs for error control for example try except blocks in Python or set minus e patterns in shell scripts; validating inputs; producing clear error messages and logs; and avoiding common pitfalls that lead to silent failures. Also includes code quality best practices such as readable naming and code structure, using standard libraries instead of reinventing functionality, writing testable code and unit tests, and designing for maintainability and observability.
Error Handling and Defensive Programming
Covers designing and implementing defensive, fault tolerant code and system behaviors to prevent and mitigate production failures. Topics include input validation and sanitization, null and missing data handling, overflow and boundary protections, exception handling and propagation patterns, clear error reporting and structured logging for observability, graceful degradation and fallback strategies, retry and backoff policies and idempotency for safe retries. Also address concurrency and synchronization concerns, resource and memory management to avoid exhaustion, security related input checks, and how to document and escalate residual risks. Candidates should discuss pragmatic trade offs between robustness and complexity, show concrete defensive checks and assertions, and describe test strategies for error paths including unit tests and integration tests and how monitoring and operational responses tie into robustness.
Core Data Structures
Fundamental built in data structures used in everyday programming and coding interviews, focusing on lists, strings, and dictionaries. For lists cover indexing, slicing, iteration, common mutation operations such as append and extend, common algorithms such as sorting and reversing, and memory and performance implications. For strings cover indexing, slicing, common methods such as split, join, strip, replace, and approaches to string manipulation and pattern processing. For dictionaries cover key value semantics, insertion and lookup, iteration patterns, methods for safe access, and using dictionaries as hash tables for counting and grouping. Candidates should also know the time complexity of common operations expressed in plain terms such as constant time, linear time, and quadratic time, and be able to choose the appropriate structure for a problem and reason about space and performance tradeoffs. Practice often includes implementation level manipulations, common interview problems such as two sum and frequency counting, and writing clear code using these structures.
Python Fundamentals and Core Syntax
Comprehensive knowledge of core Python language features and syntax, including primitive and composite data types such as integer numbers, floating point numbers, strings, booleans, lists, dictionaries, sets, and tuples. Candidates should understand variable assignment and naming, operators for arithmetic, logical, and comparison operations, and control flow constructs including conditional statements and loops. Expect familiarity with function definition, invocation, parameter passing, return values, and scope rules, as well as common built in functions and idioms such as iteration utilities, list comprehensions, generator expressions, and basic functional utilities like map and filter. Candidates should demonstrate error and exception handling techniques and best practices for writing readable and maintainable code with modularization and clear naming. Practical skills include file input and output, working with common data formats such as comma separated values and JavaScript Object Notation, selecting appropriate data structures with attention to performance and memory characteristics, and applying memory efficient patterns for processing large data sets using iterators and generators. Familiarity with the standard library and common utilities for parsing and transforming data, and the ability to write small code snippets to solve algorithmic and data manipulation tasks, are expected.
Python Data Structures and Algorithms
Core Python data structure and algorithm knowledge used for manipulating collections and solving common data processing problems. Candidates should know built in types such as lists, dictionaries, sets, and tuples and their performance characteristics; be able to implement and reason about searching, sorting, counting, deduplication, and frequency analysis tasks; and choose appropriate algorithms and data structures for time and space efficiency. Familiarity with Python standard library utilities such as collections.Counter, defaultdict, deque, and heapq is expected, as is writing Pythonic, clear code that handles edge cases. Questions may include algorithmic trade offs, complexity analysis, and applying these techniques to practical data manipulation problems where custom logic is required beyond what pandas or NumPy provide.
Programming Fundamentals and Code Quality
Encompasses core programming skills, data structures, basic algorithms, language fundamentals, and code quality practices. Expect proficiency with arrays, strings, lists, hash maps or dictionaries, sets, common collection operations, basic sorting and searching algorithms, and tradeoffs between data structures. Understand control flow, functions and modular design, classes and object oriented programming concepts including encapsulation, inheritance, and polymorphism, exception handling, file input and output, and common language idioms for mainstream interview languages such as Python, Java, and C plus plus. Emphasizes writing clean, readable, maintainable code: meaningful naming, modular functions, small interfaces, handling edge cases and errors, logging and documentation, simple testing and debugging strategies, and awareness of time and space complexity for common operations. Candidates should be able to implement correct solutions, follow language specific idioms where appropriate, and demonstrate attention to code quality and readability.
Python Data Types and Structures
Practical expertise with Python built in data types and collection types and how to use them idiomatically and efficiently. Topics include lists tuples dictionaries sets and related operations append extend pop sort comprehension and slicing, dictionary lookups and set operations, and utilities from the collections module. Candidates should know time and space characteristics of Python operations, how to manipulate these structures for algorithmic solutions, and how to write clear Pythonic implementations that leverage language features for performance and readability.
Python Programming & ML Libraries
Python programming language fundamentals (syntax, data structures, control flow, error handling) with practical usage of machine learning libraries such as NumPy, pandas, scikit-learn, TensorFlow, and PyTorch for data manipulation, model development, training, evaluation, and lightweight ML tasks.
Basic Data Structures (Objects, Maps, Sets)
Understand how objects work in JavaScript including prototypal inheritance and property descriptors. Know when to use Maps vs Objects and Sets vs Arrays. Understand the performance characteristics of different data structures. Be comfortable with nested data structures and how to manipulate them efficiently.